Selected Publications

For a comprehensive list of publication, go to Google Scholar Citation

Screen Shot 2020-05-04 at 12.30.00

Dai, D., Ichikawa, M.#, Peri, K., Rebinski, A., Bui, K.H.# (2020). Identification and mapping of central pair proteins by proteomic analysis. Biophysics and Physicobiology. 10.2142/biophysico.BSJ-2019048

Screen Shot 2020-05-03 at 11.47.37

Khalifa A.A.Z.*, Ichikawa, M.*, Dai, D., Black, C., Peri, K., McAlear, T.S., Kubo, S., Veyron, S., Yang, S.K., Vargas, J., , Bechstedt, B., Trempe, J.F., Bui, K.H.# (2020). The inner junction complex of the cilia is an interaction hub that involves tubulin post-translational modifications. eLife. 9:e52760


Leary, A., Sim, E., Nazarova, E., Shulist, K., Yang, S.K., Bui, K.H., Francois, P., Vogel, J. (2019). Successive Kinesin 5 microtubule cross-linking and sliding promote fast, irreversible formation of a stereotyped bipolar spindle. Current Biol. 29 (22):3825-37.

Screen Shot 2020-05-03 at 11.57.35

Ichikawa, M.*, Khalifa, A.A.*, Kubo, S., Dai, D., Basu, K., Maghrebi, M.A.F., Vargas, J., Bui, K.H. # (2019). Tubulin lattice in cilia is in a stressed form regulated by microtubule inner proteins. PNAS. 116 (40): 19930-19938.


Chaaban, S., Jariwala, S., Hsu, C.T., Redemann, S., Kollman, J.M., Müller-Reichert, T., Sept, D., Bui, K.H., Brouhard, G.J. (2018). The Structure and Dynamics of C.elegans Tubulin Reveals the Mechanistic Basis of Microtubule Growth. Dev Cell. S1534- 5807(18)30696-8.

Ichikawa, M. & Bui, K.H. (2018) Microtubule Inner Proteins: A Meshwork of Luminal Proteins Stabilizing the Doublet Microtubule. BioEssays 40 (3): 1700209​

Ichikawa, M., Liu, D., Kastritis, P.L., Basu, K., Hsu, T.C., Yang, S.  Bui, K.H. 2017. Subnanometer-resolution structure of the doublet microtubule reveals new classes of microtubule- associated proteins. Nature Comms. 8: 15035.

Selected past publications

Kosinski, J., Mosalaganti, S., von Appen, A., Teimer, R., DiGuilio, A.L., Wan, W., Bui, K.H., Hagen, W., Briggs, J.A.G., Glavy, J.S., Hurt, E., Beck, M. 2016. Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science. 352: 363-365. (Selected for Cover Art)

von Appen, A., Kosinski, J., Sparks, L., Ori, A., DiGuilio, A.L., Vollmer, B., Mackmull, M., Banterle, N., Parca, L., Kastritis, P., Buczak, K., Mosalaganti, M., Hagen, W., Andres-Pons, A., Lemke, E.A., Bork, P., Antonin, W., Glavy, J.S., Bui, K.H*., Beck, M*. 2015. In situ structural analysis of the human nuclear pore complex. Nature 526: 140 (* Shared corresponding authors)

Bui, K.H.*, von Appen, A.*, DiGuilio, A.L., Ori, A., Sparks, L., Mackmull, M., Bock, T., Hagen, W., Andres-Pons, A., Glavy, J.S., Beck, M. 2013. Integrated structural analysis of the human nuclear pore complex scaffold. Cell. 155 (6): 1233-1243 (* Shared first author, Selected for Cover)

Banterle, N.*, Bui, K.H.*, Lemke, E.,  Beck, M. Fourier ring correlation as a resolution criterion for super resolution microscopy. J Struct Biol. 183: 363-7 (* Shared corresponding authors)

Bui, K.H., Yagi, T., Yamamoto, R., Kamiya, R., Ishikawa, T. Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme. 2012. J Cell Biol., 198, 913-25

Movassagh, T.*, Bui, K.H.*, Sakakibara, H., Oiwa, K., Ishikawa, T. Global conformational changes of dynein arms in flagella induced by nucleotides. 2010. Nat. Struct. Mol. Biol. 17, 761-7. (* Shared first author, Highlighted article)

Bui, K.H., Sakakibara, H., Movassagh, T., Oiwa, K., Ishikawa, T. 2009. Asymmetry of inner dynein arms and inter-doublet links in Chlamydomonas flagella. J. Cell Biol. 186, 437-46. (Highlighted article in that issue)

Bui, K.H., Sakakibara, H., Movassagh, T., Oiwa, K., Ishikawa, T. 2008. Molecular architecture of inner dynein arms in situ in Chlamydomonas flagella. J. Cell Biol. 183, 923-32.